skip to main content


Search for: All records

Creators/Authors contains: "Wang, Lequn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many large-scale recommender systems consist of two stages. The first stage efficiently screens the complete pool of items for a small subset of promising candidates, from which the second-stage model curates the final recommendations. In this paper, we investigate how to ensure group fairness to the items in this two-stage architecture. In particular, we find that existing first-stage recommenders might select an irrecoverably unfair set of candidates such that there is no hope for the second-stage recommender to deliver fair recommendations. To this end, motivated by recent advances in uncertainty quantification, we propose two threshold-policy selection rules that can provide distribution-free and finite-sample guarantees on fairness in first-stage recommenders. More concretely, given any relevance model of queries and items and a point-wise lower confidence bound on the expected number of relevant items for each threshold-policy, the two rules find near-optimal sets of candidates that contain enough relevant items in expectation from each group of items. To instantiate the rules, we demonstrate how to derive such confidence bounds from potentially partial and biased user feedback data, which are abundant in many large-scale recommender systems. In addition, we provide both finite-sample and asymptotic analyses of how close the two threshold selection rules are to the optimal thresholds. Beyond this theoretical analysis, we show empirically that these two rules can consistently select enough relevant items from each group while minimizing the size of the candidate sets for a wide range of settings. 
    more » « less
  2. Automated decision support systems promise to help human experts solve multiclass classification tasks more efficiently and accurately. However, existing systems typically require experts to understand when to cede agency to the system or when to exercise their own agency. Otherwise, the experts may be better off solving the classification tasks on their own. In this work, we develop an automated decision support system that, by design, does not require experts to understand when to trust the system to improve performance. Rather than providing (single) label predictions and letting experts decide when to trust these predictions, our system provides sets of label predictions constructed using conformal prediction—prediction sets—and forcefully asks experts to predict labels from these sets. By using conformal prediction, our system can precisely trade-off the probability that the true label is not in the prediction set, which determines how frequently our system will mislead the experts, and the size of the prediction set, which determines the difficulty of the classification task the experts need to solve using our system. In addition, we develop an efficient and near-optimal search method to find the conformal predictor under which the experts benefit the most from using our system. Simulation experiments using synthetic and real expert predictions demonstrate that our system may help experts make more accurate predictions and is robust to the accuracy of the classifier the conformal predictor relies on. 
    more » « less
  3. In recent years, a new line of research has taken an interventional view of recommender systems, where recommendations are viewed as actions that the system takes to have a desired effect. This interventional view has led to the development of counterfactual inference techniques for evaluating and optimizing recommendation policies. This article explains how these techniques enable unbiased offline evaluation and learning despite biased data, and how they can inform considerations of fairness and equity in recommender systems. 
    more » « less
  4. Ranking items by their probability of relevance has long been the goal of conventional ranking systems. While this maximizes traditional criteria of ranking performance, there is a growing understanding that it is an oversimplification in online platforms that serve not only a diverse user population, but also the producers of the items. In particular, ranking algorithms are expected to be fair in how they serve all groups of users --- not just the majority group --- and they also need to be fair in how they divide exposure among the items. These fairness considerations can partially be met by adding diversity to the rankings, as done in several recent works. However, we show in this paper that user fairness, item fairness and diversity are fundamentally different concepts. In particular, we find that algorithms that consider only one of the three desiderata can fail to satisfy and even harm the other two. To overcome this shortcoming, we present the first ranking algorithm that explicitly enforces all three desiderata. The algorithm optimizes user and item fairness as a convex optimization problem which can be solved optimally. From its solution, a ranking policy can be derived via a novel Birkhoff-von Neumann decomposition algorithm that optimizes diversity. Beyond the theoretical analysis, we investigate empirically on a new benchmark dataset how effectively the proposed ranking algorithm can control user fairness, item fairness and diversity, as well as the trade-offs between them. 
    more » « less
  5. Contextual bandit algorithms have become widely used for recommendation in online systems (e.g. marketplaces, music streaming, news), where they now wield substantial influence on which items get shown to users. This raises questions of fairness to the items — and to the sellers, artists, and writers that benefit from this exposure. We argue that the conventional bandit formulation can lead to an undesirable and unfair winner-takes-all allocation of exposure. To remedy this problem, we propose a new bandit objective that guarantees merit-based fairness of exposure to the items while optimizing utility to the users. We formulate fairness regret and reward regret in this setting and present algorithms for both stochastic multi-armed bandits and stochastic linear bandits. We prove that the algorithms achieve sublinear fairness regret and reward regret. Beyond the theoretical analysis, we also provide empirical evidence that these algorithms can allocate exposure to different arms effectively. 
    more » « less
  6. The ability to perform offline A/B-testing and off-policy learning using logged contextual bandit feedback is highly desirable in a broad range of applications, including recommender systems, search engines, ad placement, and personalized health care. Both offline A/B-testing and offpolicy learning require a counterfactual estimator that evaluates how some new policy would have performed, if it had been used instead of the logging policy. In this paper, we present and analyze a family of counterfactual estimators which subsumes most estimators proposed to date. Most importantly, this analysis identifies a new estimator – called Continuous Adaptive Blending (CAB) – which enjoys many advantageous theoretical and practical properties. In particular, it can be substantially less biased than clipped Inverse Propensity Score (IPS) weighting and the Direct Method, and it can have less variance than Doubly Robust and IPS estimators. In addition, it is subdifferentiable such that it can be used for learning, unlike the SWITCH estimator. Experimental results show that CAB provides excellent evaluation accuracy and outperforms other counterfactual estimators in terms of learning performance. 
    more » « less
  7. Not all people are equally easy to identify: color statistics might be enough for some cases while others might re- quire careful reasoning about high- and low-level details. However, prevailing person re-identification(re-ID) meth- ods use one-size-fits-all high-level embeddings from deep convolutional networks for all cases. This might limit their accuracy on difficult examples or makes them needlessly ex- pensive for the easy ones. To remedy this, we present a new person re-ID model that combines effective embeddings built on multiple convolutional network layers, trained with deep-supervision. On traditional re-ID benchmarks, our method improves substantially over the previous state-of- the-art results on all five datasets that we evaluate on. We then propose two new formulations of the person re- ID problem under resource-constraints, and show how our model can be used to effectively trade off accuracy and computation in the presence of resource constraints. 
    more » « less